Previous Page  27 / 69 Next Page
Information
Show Menu
Previous Page 27 / 69 Next Page
Page Background

26

www.risingstars-uk.com/rsm

MATHEMATICS

Trust Rising Stars to

help you embed a

mastery curriculum

Rising Stars Mathematics

is a high-quality

primary mathematics programme

developed to help all children master

the new curriculum through

learning, practice and play.

The programme adapts the best

teaching and learning approaches

from the UK, Shanghai and Singapore to

develop maths mastery in every classroom.

Embed problem solving and reasoning

into every maths lesson through an

enquiry-based approach.

Support all teachers with comprehensive

support and subject knowledge videos.

Save hours of preparation time with

ready-made resources that are easy

to access.

Textbooks

The full colour, engaging Textbooks

have been carefully written to aid

high-quality teaching and learning

in the classroom. A set of practice

activities is provided for each

concept, which help to

build conceptual

understanding and

procedural fluency.

1 2

KEY STAGES

HOW TO BUY

We offer flexible purchasing options to suit your school’s needs and

budget. Speak to your local sales consultant who will be able to

create a bespoke

Rising Stars Mathematics

package for your school.

Visit

www.risingstars-uk.com/consultant

to find your local consultant.

Year

Group

Teacher’s

Guide

Pupil

Textbooks

Practice

Books

Half-termly

Assessments

Whiteboard

eTextbooks

Online

Resource Bank

Year

1

Year

2

Year

3

Year

4

Year

5

Year

6

EYFS

The most

cost-effective

mastery textbook

programme

10

Numbers everywhere!

What else do I

have 10 of?

5 is a special

number. I’m 5!

1

Unit

Iwonderwhere

number 28 is?

46

Shapehunt

Let'splay

3

Game

board

Seepages60–1of the

Teacher’sGuide

.Explain the rules foreachgame

andallow children to choosewhich toplay.Encourage them to challenge

themselvesandpractisewhat theyhave learnt in theunit.

Teacher’sGuide

88

Andfinally…

Let's review

Review

7

2

a

Use counters to show3differentunit fractionson

these shapesby coveringparts.Whichunit fractions

are they?Explainhowyouknow.

b

Nowuse counters tomakedifferentnon-unit fractions.

Whichnon-unit fractionshaveyoumade?Explainhow

youknow.

1

a

Use representationsofyour choice to checkMiaandOli’s statements.

b

Writeall thenumbers inorder from smallest to largest.

Youneed:

Base10 apparatus

place-value counters

place-valuegrid

digit cards

Youneed:

counters

Seepages102–3of the

Teacher’sGuide

forguidanceon runningeach task.

Observe children to identify thosewhohavemastered conceptsand thosewho

require further consolidation.

Teacher’sGuide

19

2

4 09

818 > 881

701 < 710

678 > 687

909 > 900

1

10

100

5

3

1

Let's learn

14

1b

Beforeworking through the

Textbook

, studypage28of the

Teacher’sGuide

to seehow

the concepts shouldbe introduced.Readanddiscuss thepagewith the children.

Provide concrete resources to supportexploration.

Teacher’sGuide

Seven thousand,

three hundred

and eight is

written like this.

Place-valuegrids

Different representations

You can represent the samenumber in lotsofdifferentways.

These4picturesall show1346.

Aplace-valuegridhelpsyou see thepositionofeachdigit.

Lookat thegrid.7 is in the

thousandsposition.

Multiplyeachdigitby itsposition tofind its truevalue.

7×1000=7000

Addall thenumbers together.

7000+300+8+0.4+0.05=7308.45

Thereareno tens soyouuse zeroasaplaceholder.

Youneed:

place-valuegrids

digit cards

place-value cards

Base10 apparatus

place-value counters

coloured counters

coins and notes

That’s seven hundred and

thirty-eight. There is no

tens in your number so

you need a place holder!

Placevalue

5

3

1

4 09

1000

100

10

1

.

10th

100th

7

3

0

8

.

4

5

0

0

0

0

0

0

4

6

3

1

0

0

0

1

0

346

1 1 1 1 1 1

10

10

10

10

100

100

100

1000

1

10

100

738

Y4_U01_[010-019].indd 14

04/03/2016 12:56

42

���� �

������������

�������

�������� ����

��� ��� �����

�����

������������

�������

������ ����

�����������

�����

����������

��������

���� �

���� ���

�������

���� �

����� �������

�������

������ ����

�����������

���� �

������������

�������

�������� ����

������ �����

���� �

���� ���

�������

���� �

����� �������

�������

������ ����

�����������

���� �

������������

�������

��������� ���

��������

��

��

��

3

Game

board

Let'splay

Head for the stars!

Seepages56–7of the

Teacher’sGuide

.Explain the rules foreachgame

andallow children to choosewhich toplay.Encourage them to challenge

themselvesandpractisewhat theyhave learnt in theunit.

Teacher’sGuide

56

Let's learn

Netsofa triangularprism

Anet isanoutlinemadewhena3-D shape isopenedoutflat.

Of thesenets,only thefirst3 fold tomakea triangularprism.

Formula for thevolumeofacuboid

A cuboid isa3-D shape.Tofind itsvolumeyouneed

3measurements: length,widthandheight.

The formula is:

Volume= length×width×height

or

V

=

l

×

w

×

h

or simply

V

=

lwh

Theunitsare cubicunits,e.g. cm

3

(centimetres cubed),becauseyoumultiply cm× cm× cm.

Themeasurements canbemultiplied inanyorderbecausemultiplication is commutative.

Ifyouknow thevolume,you canuse the formula tofindamissingmeasurement.

If

V

=36cm

3

,

l

=6cmand

w

=2cm,you can

substitute thesevalues into the formula

V

=

lwh

:

36=6×2×

h

36=12

h

h

=3cm

Describing3-Dshapes

andmakingnets

4c

Youneed:

3-D shapes

3-D shape

construction kits

cm-squared paper

a foodbox

Any arrangement of

2 triangular faces

and 3 rectangular

faceswillmake a

net that folds into a

triangular prism.

I don’t think so. There’smore

than 1 possible net, but not

every combination folds to

make a triangular prism.

Beforeworking through the

Textbook

, studypage70of the

Teacher’sGuide

to see

how the concepts shouldbe introduced.Readanddiscuss thepagewith the children.

Provide concrete resources to supportexploration.

Teacher’sGuide

6cm

2cm

3cm

Pupil videos

introduce the topic

Digital versions of

the Teacher’s Guides

Subject knowledge

and CPD videos

Editable medium-

term plans

Introductory

presentation for

staff meetings

Whiteboard

Modelling Toolkit